2,814 research outputs found

    Hydraulic actuator motion limiter ensures operator safety

    Get PDF
    Device regulates action of hydraulic linkage to control column to minimize hazard to operator. Primary components of device are flow rate control valve, limiter accumulator, and shutoff valve. Limiter may be incorporated into other hydraulic systems to prevent undue wear on hydraulic actuators and associated components

    Energy limiter for hydraulic actuators Patent

    Get PDF
    System to control speed of hydraulically movable members by limiting energy applied to actuators with hydraulic servo loo

    The Effects of a Photoionizing UV Background on the Formation of Disk Galaxies

    Full text link
    We use high resolution N-body/gasdynamical simulations to investigate the effects of a photoionizing UV background on the assembly of disk galaxies in hierarchically clustering universes. We focus on the mass and rotational properties of gas that can cool to form centrifugally supported disks in dark matter halos of different mass. Photoheating can significantly reduce the amount of gas that can cool in galactic halos. Depending on the strength of the UV background field, the amount of cooled gas can be reduced by up to 50%50\% in systems with circular speeds in the range 8080-200200 \kms. The magnitude of the effect, however, is not enough to solve the ``overcooling'' problem that plagues hierarchical models of galaxy formation if the UV background is chosen to be consistent with estimates based on recent observations of QSO absorption systems. Photoionization has little effect on the collapse of gas at high redshift and affects preferentially gas that is accreted at late times. Since disks form inside-out, accreting higher angular momentum gas at later times, disks formed in the presence of a UV background have spins that are even smaller than those formed in simulations that do not include the effects of photoionization. This exacerbates the angular momentum problem that afflicts hierarchical models of disk formation. We conclude that photoionization cannot provide the heating mechanism required to reconcile hierarchically clustering models with observations. Energy feedback and enrichment processes from the formation and evolution of stars must therefore be indispensable ingredients for any successful model of the formation of disk galaxies.Comment: 36 pages, w/ embedded figures, submitted to ApJ. Also available at http://penedes.as.arizona.edu/~jfn/preprints/dskform.ps.g

    Hysteresis multicycles in nanomagnet arrays

    Full text link
    We predict two new physical effects in arrays of single-domain nanomagnets by performing simulations using a realistic model Hamiltonian and physical parameters. First, we find hysteretic multicycles for such nanomagnets. The simulation uses continuous spin dynamics through the Landau-Lifshitz-Gilbert (LLG) equation. In some regions of parameter space, the probability of finding a multicycle is as high as ~0.6. We find that systems with larger and more anisotropic nanomagnets tend to display more multicycles. This result demonstrates the importance of disorder and frustration for multicycle behavior. We also show that there is a fundamental difference between the more realistic vector LLG equation and scalar models of hysteresis, such as Ising models. In the latter case, spin and external field inversion symmetry is obeyed but in the former it is destroyed by the dynamics, with important experimental implications.Comment: 7 pages, 2 figure

    Kinematics of Metal-Poor Stars in the Galaxy. III. Formation of the Stellar Halo and Thick Disk as Revealed from a Large Sample of Non-Kinematically Selected Stars

    Full text link
    (Abbreviated) We present a detailed analysis of the space motions of 1203 solar-neighborhood stars with metal abundances [Fe/H] <= -0.6, on the basis of a recently revised and supplemented catalog of metal-poor stars selected without kinematic bias (Beers et al. 2000). This sample, having available proper motions, radial velocities, and distance estimates for stars with a wide range of metal abundances, is by far the largest such catalog to be assembled to date. Unlike essentially all previous kinematically selected catalogs, the metal-poor stars in our sample exhibit a diverse distribution of orbital eccentricities, e, with no apparent correlation between [Fe/H] and e. This demonstrates, clearly and convincingly, that the evidence offered by Eggen, Lynden-Bell, and Sandage (1962) for a rapid collapse of the Galaxy, an apparent correlation between the orbital eccentricity of halo stars with metallicity, is basically the result of their proper-motion selection bias. However, even in our non-kinematically selected sample, we have identified a small concentration of high-e stars at [Fe/H] = -1.7, which may originate, in part, from infalling gas during the early formation of the Galaxy. The implications of our results for the formation of the Galaxy are also discussed, in particular in the context of the currently favored CDM theory of hierarchical galaxy formation.Comment: 51 pages, including 17 figures, to appear in AJ (June 2000), full paper with all figures embedded available at http://pluto.mtk.nao.ac.jp/people/chiba/preprint/halo5

    Subharmonics and Aperiodicity in Hysteresis Loops

    Full text link
    We show that it is possible to have hysteretic behavior for magnets that does not form simple closed loops in steady state, but must cycle multiple times before returning to its initial state. We show this by studying the zero-temperature dynamics of the 3d Edwards Anderson spin glass. The specific multiple varies from system to system and is often quite large and increases with system size. The last result suggests that the magnetization could be aperiodic in the large system limit for some realizations of randomness. It should be possible to observe this phenomena in low-temperature experiments.Comment: 4 pages, 3 figure

    Dissipative N - body code for galaxy evolution

    Full text link
    The evolving galaxy is considered as a system of baryonic fragments embedded into the static dark nonbaryonic (DH) and baryonic (BH) halo and subjected to gravitational and viscous interactions. Although the chemical evolution of each separate fragment is treated in the frame of one -- zone close box model with instantaneous recycling, its star formation (SF) activity is a function of mean local gas density and, therefore, is strongly influenced by other interacting fragments. In spite of its simplicity this model provides a realistic description of the process of galaxy formation and evolution over the Hubble timescale.Comment: 11 pages, LaTeX, 7 figures, using the article.sty, expected in A&ApTr, 18, 83

    A Laser Frequency Comb System for Absolute Calibration of the VTT Echelle Spectrograph

    Full text link
    A wavelength calibration system based on a laser frequency comb (LFC) was developed in a co-operation between the Kiepenheuer-Institut f\"ur Sonnenphysik, Freiburg, Germany and the Max-Planck-Institut f\"ur Quantenoptik, Garching, Germany for permanent installation at the German Vacuum Tower Telescope (VTT) on Tenerife, Canary Islands. The system was installed successfully in October 2011. By simultaneously recording the spectra from the Sun and the LFC, for each exposure a calibration curve can be derived from the known frequencies of the comb modes that is suitable for absolute calibration at the meters per second level. We briefly summarize some topics in solar physics that benefit from absolute spectroscopy and point out the advantages of LFC compared to traditional calibration techniques. We also sketch the basic setup of the VTT calibration system and its integration with the existing echelle spectrograph.Comment: 9 pages, 2 figures; Solar Physics 277 (2012
    • …
    corecore